Câu 81 trang 171 Sách bài tập (SBT) Toán 9 Tập 1
Câu 81 trang 171 Sách bài tập (SBT) Toán 9 Tập 1
Cho đoạn thẳng AB, điểm C nằm giữa A và B. Vẽ về một phía của AB các nửa đường tròn có đường kính theo thứ tự là AB, AC, CB. Đường vuông góc với AB tại C cắt nửa đường tròn lớn tại D. DA, DB cắt các nửa đường tròn có đường kính AC, CB theo thứ tự M, N.
a) Tứ giác DMCN là hình gì ?Vì sao ?
b) Chứng minh hệ thức DM.DA = DN.DB.
c) Chứng minh rằng MN là tiếp tuyến chung của các nửa đường tròn có đường kính AC và CB.
d) Điểm C ở vị trí nào trên AB thì MN có độ dài lớn nhất ?
Giải:
a) Tam giác ABD nội tiếp trong đường tròn có AB là đường kính nên (widehat {BDA} = 90^circ ) hay (widehat {MDN} = 90^circ )
Tam giác ACM nội tiếp đường tròn có AC là đường kính nên (widehat {AMC} = 90^circ )
Suy ra: (CM ⊥ AD ⇒widehat {CMD} = 90^circ )
Tam giác BCN nội tiếp trong đường tròn có BC là đường kính nên (widehat {BNC} = 90^circ )
Suy ra: (CN ⊥ BD ⇒ widehat {CND} = 90^circ )
Tứ giác CMDN có ba góc vuông nên nó là hình chữ nhật.
b) Tam giác ACD vuông tại C có CM ⊥ AD.
Theo hệ thức lượng trong tam giác vuông, ta có:
(C{D^2} = DM.DA) (1)
Tam giác BCD vuông tại C nên CN ^ BD.
Theo hệ thức lượng trong tam giác vuông, ta có:
(C{D^2} = DN.DB) (2)
Từ (1) và (2) suy ra: DM.DA = DN.DB
c) Gọi P là trung điểm của AC, Q là trung điểm của BC, I là giao điểm của MN với DC.
Vì CMDN là hình chữ nhật nên IC = IM = ID = IN
Tam giác CNI cân tại I nên (widehat {ICN} = widehat {INC}) (3)
Tam giác CNQ cân tại Q nên (widehat {QCN} = widehat {QNC}) (4)
Vì AB ^ CD nên (widehat {ICN} + widehat {QCN} = 90^circ ) (5)
Từ (3), (4) và (5) suy ra: (widehat {INC} + widehat {QNC} = 90^circ ) hay MN ^ QN
Vậy MN là tiếp tuyến của đường tròn đường kính BC.
Tam giác CMI cân tại I nên (widehat {ICM} = widehat {IMC}) (6)
Tam giác CMP cân tại P nên (widehat {PCM} = widehat {PMC}) (7)
Vì AB ⊥ CD nên (widehat {PCM} + widehat {ICM} = 90^circ ) (8)
Từ (6), (7) và (8) suy ra: (widehat {PMC} + widehat {IMC} = 90^circ ) hay MN ⊥ PM
Vậy MN là tiếp tuyến của đường tròn đường kính AC.
d) Gọi O là trung điểm của AB
Tứ giác CMDN là hình chữ nhật nên CD = MN
Trong tam giác OCD ta có: (CD le OD) nên (MN le OD)
Vì OD không đổi nên MN = OD là giá trị lớn nhất khi và chỉ khi C trùng với O.
Vậy C là trung điểm của AB thì MN có độ dài lớn nhất.