Giải bài 16, 17, 18, 19, 20 trang 11 SGK Toán 8 tập 1

0

Bài 16 trang 11 sgk toán 8 tập 1

 Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu;

a) x2 + 2x + 1;                      b) 9x2 + y2 + 6xy;

c) 25a2 + 4b2 – 20ab;            d) x2 – x + (frac{1}{4}).

Bài giải:

a) x2 + 2x + 1 = x2+ 2 . x . 1 + 12

 = (x + 1)2

 b) 9x2 + y2+ 6xy = (3x)2 + 2 . 3 . x . y + y2 = (3x + y)2

c) 25a2 + 4b2– 20ab = (5a)2 – 2 . 5a . 2b + (2b)2 = (5a – 2b)2

Hoặc 25a2 + 4b2 – 20ab = (2b)2 – 2 . 2b . 5a + (5a)2 = (2b – 5a)2

d) x2 – x + (frac{1}{4}) = x2 – 2 . x . (frac{1}{2}) + (left ( frac{1}{2} right )^{2})= (left ( x – frac{1}{2} right )^{2})

Hoặc x2 – x + (frac{1}{4}) = (frac{1}{4}) – x + x2 = (left ( frac{1}{2} right )^{2}) – 2 . (frac{1}{2}) . x + x2 = (left ( frac{1}{2} – xright )^{2})


Bài 17 trang 11 sgk toán 8 tập 1

 Chứng minh rằng:

(10a + 5)2 = 100a . (a + 1) + 25.

Từ đó em hãy nêu cách tính nhẩm bình phương của một số tự nhiên có tận cùng bằng chữ số 5.

Áp dụng để tính: 252, 352, 652, 752.

Bài giải:

Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52

                          = 100a2 + 100a + 25

                          = 100a(a + 1) + 25.

Cách tính nhaame bình thường của một số tận cùng bằng chữ số 5;

Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được

(10a + 5)2 = 100a(a + 1) + 25

Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.

Áp dụng;

– Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.

– Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.

– 652 = 4225

– 752 = 5625.


Bài 18 trang 11 sgk toán 8 tập 1

Hãy tìm cách giúp bạn An khôi phục lại những hằng đẳng thức bị mực làm nhòe đi một số chỗ:

a) x2 + 6xy + … = (… + 3y)2;

b) … – 10xy + 25y2 = (… – …)2;

Hãy nêu một số đề bài tương tự.

Bài giải:

a) x2 + 2 . x . 3y + … = (…+3y)2

x2 + 2 . x . 3y + (3y)2 = (x + 3y)2

Vậy: x2 + 6xy +9y2 = (x + 3y)2

b) …-2 . x . 5y + (5y)2 = (… – …)2;

x2 – 2 . x . 5y + (5y)2 = (x – 5y)2

Vậy: x2 – 10xy + 25y2 = (x – 5y)2

Đề bài tương tự: Chẳng hạn:

4x + 4xy + … = (… + y2)

… – 8xy + y2 = (… – …)2


Bài 19 trang 12 sgk toán 8 tập 1

 Đố: Tính diện tích phần hình còn lại mà không cần đo.

Từ một miếng tôn hình vuông có cạnh bằng a + b, bác thợ cắt đi một miếng cũng hình vuông có cạnh bằng a – b (cho a > b). Diện tích phần hình còn lại là bao nhiêu ? Diện tích phần hình còn lại có phụ thuộc vào vị trí cắt không ?

Bài giải:
Diện tích của miếng tôn là  (a + b)2

Diện tích của miếng tôn phải cắt là (a – b)2.

Phần diện tích còn lại là  (a + b)2 – (a – b)2.

Ta có: (a + b)2 – (a – b)2 = a2 + 2ab + b2 – (a2 – 2ab + b2)

                                       = a2 + 2ab + b2 – a2 + 2ab – b2

                                                             = 4ab

Vậy phần diện tích hình còn lại là 4ab và không phụ thuộc vào vị trí cắt.


Bài 20 trang 12 sgk toán 8 tập 1

 Nhận xét sự đúng, sai của kết quả sau:

x2 + 2xy + 4y2 = (x + 2y)2

Bài giải:

Nhận xét sự đúng, sai:

Ta có: (x + 2y)2 = x2 + 2 . x . 2y + 4y2

                        = x2 + 4xy + 4y2

Nên kết quả x2 + 2xy + 4y2 = (x + 2y)2 sai.

Giaibaitap.me

Leave a comment