Giải bài 19, 20, 3.1 trang 7, 8 Sách bài tập Toán 8 tập 1

0

Câu 19 trang 7 Sách bài tập (SBT) Toán 8 tập 1

Tìm giá trị nhỏ nhất  của các đa thức:

a. P( = {x^2} – 2x + 5)

b. Q( = 2{x^2} – 6x)

c. M( = {x^2} + {y^2} – x + 6y + 10)

Giải:                                   

a. P(= {x^2} – 2x + 5)( = {x^2} – 2x + 1 + 4 = {left( {x – 1} right)^2} + 4)

Ta có: 

({left( {x – 1} right)^2} ge 0 Rightarrow {left( {x – 1} right)^2} + 4 ge 4)

( Rightarrow P = {x^2} – 2x + 5 = {left( {x – 1} right)^2} + 4 ge 4)

( Rightarrow P = 4)  là giá trị bé nhất ⇒ ({left( {x – 1} right)^2} = 0 Rightarrow x = 1)

Vậy P=4 là giá trị bé nhất của đa thức khi  

b. Q( = 2{x^2} – 6x)( = 2left( {{x^2} – 3x} right) = 2left( {{x^2} – 2.{3 over 2}x + {9 over 4} – {9 over 4}} right))

 ( = 2left[ {{{left( {x – {2 over 3}} right)}^2} – {9 over 4}} right] = 2{left( {x – {2 over 3}} right)^2} – {9 over 2})

      Ta có: ({left( {x – {2 over 3}} right)^2} ge 0 Rightarrow 2{left( {x – {2 over 3}} right)^2} ge 0 Rightarrow 2{left( {x – {2 over 3}} right)^2} – {9 over 2} ge  – {9 over 2})

       ( Rightarrow Q =  – {9 over 2}) là giá trị nhỏ nhất ( Rightarrow {left( {x – {2 over 3}} right)^2} = 0 Rightarrow x = {2 over 3})

       Vậy (Q =  – {9 over 2})  là giá trị bé nhất của đa thức (x = {2 over 3})

c.

(eqalign{  & M = {x^2} + {y^2} – x + 6y + 10 = left( {{y^2} + 6y + 9} right) + left( {{x^2} – x + 1} right)  cr  &  = {left( {y + 3} right)^2} + left( {{x^2} – 2.{1 over 2}x + {1 over 4} + {3 over 4}} right) = {left( {y + 3} right)^2} + {left( {x – {1 over 2}} right)^2} + {3 over 4} cr} )

Ta có:

(eqalign{  & {left( {y + 3} right)^2} ge 0;{left( {x – {1 over 2}} right)^2} ge 0  cr  &  Rightarrow {left( {y + 3} right)^2} + {left( {x – {1 over 2}} right)^2} ge 0 Rightarrow {left( {y + 3} right)^2} + {left( {x – {1 over 2}} right)^2} + {3 over 4} ge {3 over 4} cr} )

( Rightarrow M = {3 over 4})  là giá trị nhỏ nhất khi ({left( {y + 3} right)^2} = 0)

( Rightarrow y =  – 3)  và ({left( {x – {1 over 2}} right)^2} = 0 Rightarrow x = {1 over 2})

Vậy (M = {3 over 4}) là giá trị bé nhất tại (y =  – 3) và (x = {1 over 2})


Câu 20 trang 7 Sách bài tập (SBT) Toán 8 tập 1

Tìm giá trị lớn nhất của các đa thức:

a. (A = 4x – {x^2} + 3)

b. (B = x – {x^2})

c. (N = 2x – 2{x^2} – 5)

Giải:

a. (A = 4x – {x^2} + 3 = 7 – {x^2} + 4x – 4 = 7 – left( {{x^2} – 4x + 4} right) = 7 – {left( {x – 2} right)^2})

Ta có: ({left( {x – 2} right)^2} ge 0)  

Suy ra: (A = 7 – {left( {x – 2} right)^2} le 7)

Vậy giá trị của A lớn nhất là 7 tại (x = 2)

b. (B = x – {x^2})( = {1 over 4} – {x^2} + x – {1 over 4} = {1 over 4} – left( {{x^2} – 2.x.{1 over 2} + {1 over 4}} right) = {1 over 4} – {left( {x – {1 over 2}} right)^2})

Vì ({left( {x – {1 over 2}} right)^2} ge 0) . Suy ra: (B = {1 over 4} – {left( {x – {1 over 2}} right)^2} le {1 over 4})

Vậy giá trị lớn nhất của biểu thức B là ({1 over 4}) tại (x = {1 over 2})

c. (N = 2x – 2{x^2} – 5) ( =  – 2left( {{x^2} – x + {5 over 2}} right) =  – 2left( {{x^2} – 2.x.{1 over 2} + {1 over 4} + {9 over 4}} right))

   ( =  – 2left[ {{{left( {x – {1 over 2}} right)}^2} + {9 over 4}} right] =  – 2{left( {x – {1 over 2}} right)^2} – {9 over 2})

Vì({left( {x – {1 over 2}} right)^2} ge 0)  nên( – 2{left( {x – {1 over 2}} right)^2} le 0)

Suy ra: (N =  – 2{left( {x – {1 over 2}} right)^2} – {9 over 2} le  – {9 over 2})

Vậy giá trị lớn nhất của biểu thức N là ( – {9 over 2})  tại (x = {1 over 2})


 Câu 3.1 trang 8 Sách bài tập (SBT) Toán 8 tập 1

Cho ({x^2} + {y^2} = 26)  và(xy = 5)  giá trị của({left( {x – y} right)^2})  là:

A. 4

B. 16

C. 21

D. 36

Giải:

Chọn B. 16

Giaibaitap.me

Leave a comment