Giải bài 30, 31, 32, 33, 34 trang 16, 17 SGK Toán 8 tập 1
Bài 30 trang 16 sgk toán 8 tập 1
Rút gọn các biểu thức sau:
a) (x + 3)(x2 – 3x + 9) – (54 + x3)
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
Bài giải:
a) (x + 3)(x2 – 3x + 9) – (54 + x3) = (x + 3)(x2 – 3x + 32 ) – (54 + x3)
= x3 + 33 – (54 + x3)
= x3 + 27 – 54 – x3
= -27
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
= (2x + y)[(2x)2 – 2 . x . y + y2] – (2x – y)(2x)2 + 2 . x . y + y2]
= [(2x)3 + y3]- [(2x)3 – y3]
= (2x)3 + y3– (2x)3 + y3= 2y3
Bài 31 trang 16 sgk toán 8 tập 1
Chứng minh rằng:
a) a3 + b3 = (a + b)3 – 3ab(a + b)
b) a3 – b3 = (a – b)3 + 3ab(a – b)
Áp dụng: Tính a3 + b3 , biết a . b = 6 và a + b = -5
Bài giải:
a) a3 + b3 = (a + b)3 – 3ab(a + b)
Thực hiện vế phải:
(a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2
= a3 + b3
Vậy a3 + b3 = (a + b)3 – 3ab(a + b)
b) a3 – b3 = (a – b)3 + 3ab(a – b)
Thực hiện vế phải:
(a – b)3 + 3ab(a – b) = a3 – 3a2b+ 3ab2 – b3 + 3a2b – 3ab2
= a3 – b3
Vậy a3 – b3 = (a – b)3 + 3ab(a – b)
Áp dụng:
Với ab = 6, a + b = -5, ta được:
a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 – 3 . 6 . (-5)
= -53 + 3 . 6 . 5 = -125 + 90 = -35.
Bài 32 trang 16 sgk toán 8 tập 1
Điền các đơn thức thích hợp vào ô trống:
a) (3x + y)(
– + ) = 27x3 + y3
b) (2x –
)( + 10x + ) = 8x3 – 125.
Trả lời:
a) Ta có:
27x3 + y3 = (3x)3 + y3= (3x + y)[(3x)2 – 3x . y + y2] = (3x + y)(9x2 – 3xy + y2)
Nên: (3x + y) (9x2 – 3xy + y2 ) = 27x3 + y3
b) Ta có:8x3 – 125 = (2x)3 – 53= (2x – 5)[(2x)2 + 2x . 5 + 52]
= (2x – 5)(4x2 + 10x + 25)
Nên: (2x – 5)(4x2+ 10x +25 ) = 8x3 – 125
Normal
0
false
false
false
VI
X-NONE
X-NONE
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:”Table Normal”;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:””;
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin-top:0cm;
mso-para-margin-right:0cm;
mso-para-margin-bottom:10.0pt;
mso-para-margin-left:0cm;
line-height:115%;
mso-pagination:widow-orphan;
font-size:11.0pt;
font-family:”Arial”,”sans-serif”;
mso-ascii-font-family:Arial;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Arial;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:”Times New Roman”;
mso-bidi-theme-font:minor-bidi;
mso-fareast-language:EN-US;}
table.MsoTableGrid
{mso-style-name:”Table Grid”;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-priority:59;
mso-style-unhide:no;
border:solid windowtext 1.0pt;
mso-border-alt:solid windowtext .5pt;
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-border-insideh:.5pt solid windowtext;
mso-border-insidev:.5pt solid windowtext;
mso-para-margin:0cm;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:11.0pt;
font-family:”Arial”,”sans-serif”;
mso-ascii-font-family:Arial;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Arial;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:”Times New Roman”;
mso-bidi-theme-font:minor-bidi;
mso-fareast-language:EN-US;}
Bài 33 trang 16 sgk toán 8 tập 1
Tính:
a) (2 + xy)2 b) (5 – 3x)2
c) (5 – x2)(5 + x2) d) (5x – 1)3
e) (2x – y)(4x2 + 2xy + y2) f) (x + 3)(x2 – 3x + 9)
Bài giải:
a) (2 + xy)2 = 22 + 2 . 2 . xy + (xy)2 = 4 + 4xy + x2y2
b) (5 – 3x)2= 52 – 2 . 5 . 3x + (3x)2 = 25 – 30x + 9x2
c) (5 – x2)(5 + x2) = 52 – (x2)2 = 25 – x4
d) (5x – 1)3 = (5x)3 – 3 . (5x)2. 1 + 3 . 5x . 12 – 13 = 125x3 – 75x2 + 15x – 1
e) (2x – y)(4x2 + 2xy + y2) = (2x – y)[(2x)2 + 2x . y + y2] = (2x)3 – y3 = 8x3 – y3
f) (x + 3)(x2 – 3x + 9) = (x + 3)(x2 – 3x + 32) = x3 + 33 = x3 + 27.
Bài 34 trang 17 sgk toán 8 tập 1
Rút gọn các biểu thức sau:
a) (a + b)2 – (a – b)2; b) (a + b)3 – (a – b)3 – 2b3
c) (x + y + z)2 – 2(x + y + z)(x + y) + (x + y)2
Bài giải:
a) (a + b)2 – (a – b)2 = (a2 + 2ab + b2) – (a2 – 2ab + b2)
= a2 + 2ab + b2 – a2 + 2ab – b2 = 4ab
Hoặc (a + b)2 – (a – b)2 = [(a + b) + (a – b)][(a + b) – (a – b)]
= (a + b + a – b)(a + b – a + b)
= 2a . 2b = 4ab
b) (a + b)3 – (a – b)3 – 2b3
= (a3 + 3a2b + 3ab2 + b3) – (a3 – 3a2b + 3ab2 – b3) – 2b3
= a3 + 3a2b + 3ab2 + b3 – a3 + 3a2b – 3ab2 + b3 – 2b3
= 6a2b
Hoặc (a + b)3 – (a – b)3 – 2b3 = [(a + b)3 – (a – b)3] – 2b3
= [(a + b) – (a – b)][(a + b)2 + (a + b)(a – b) + (a – b)2] – 2b3
= (a + b – a + b)(a2 + 2ab + b2 + a2 – b2 + a2 – 2ab + b2) – 2b3
= 2b . (3a2 + b2) – 2b3 = 6a2b + 2b3 – 2b3 = 6a2b
c) (x + y + z)2 – 2(x + y + z)(x + y) + (x + y)2
= x2 + y2 + z2+ 2xy + 2yz + 2xz – 2(x2 + xy + yx + y2 + zx + zy) + x2 + 2xy + y2
= 2x2 + 2y2 + z2 + 4xy + 2yz + 2xz – 2x2 – 4xy – 2y2 – 2xz – 2yz = z2
Giaibaitap.me